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ABSTRACT

This report describes a methodology and means for accurately

determining confidence limits for the reliability of large digital

logic networks, without exhaustively exercising all possible input

sequences or simulating all logic faults in the network. The re-

port is divided into two parts. In the first part, some mathemat-

ical models to estimate the reliability of digital circuits are

presented. A heuristic method of assigning weights to faults de-

pending on their "importance"'in a given circuit is described.

The models presented can be used to: (a) predict the reliability

of a circuit, (b) evaluate test sequences and (c) develop more

accurate reliability models of (redundant) fault tolerant compu-

ters. The second part of the report deals with the statistical
IAccession For --

methods of estimating confidence limits. 
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Chapter I

INTRODUCTION

With the increased complexity of current digital systems, reliability

considerations have become increasingly important. Being physical devices,

digital circuits are subject to failure. Although current technologies em-

ployed to construct digital systems are more reliable than earlier tech-

nologies, to a great extent the resulting decrease in the failure rate of

individual components has been offset by the increased complexity of today's

circuits. This is one of the main reasons for the increased interest, both

in industry and academia, in the subjects of maintenance and reliability of

digital systems.

A fault or failure of a digital network can be defined as a physical

defect of one or more components in the network which causes it to behave

differently from the original systems (Su [74]). In digital systems, typ-

ical maintenance goals deal with the rapid detection, location and repair

of any system faults. In many digital systems involving real-time process-

es, such as telephone switching networks and aircraft or spacecraft flight

controls, it is desirable to continuously monitor, exercise and test the

system in order to determine whether the system is performing as desired.

Such monitoring may enable automatic detection of failures via periodic

testing or through the use of codes and checking circuits (e.g. self-test-

ing and self-checking circuits) or may enable continuous operation under

failure (i.e., fault tolerence) and automatic repair via switching networks

(e.g. stand-by spares).

One way to determine whether a fault exists in a circuit is to exercise

the network against all possible input sequences and compare the results with

expected output. A second method is to insert faults, physical or modelled,

AL1



into a copy of the network, then generate tests that detect the presence of

these faults. For a complex digital system such as an airborne computer,

it is not only impossible to apply all possible input sequences but also

impractical to model all possible faults. A more practical and accepted

approach is to generate input patterns that detect a certain percent of

faults. The generation and evaluation of such test sequences have been

the subjects of much investigation (see for example Friedman (71] or Breuer

(76]).

As the average number of IC's on a board increases, the difficulty of

adequately testing the board increases, perhaps exponentially. It can be

shown that with normal rejection rates of incoming IC's, boards of 50 to 100

IC's will always contain at least one bad IC prior to testing (Fike [72]).

As things stand now, checking out a $10 microprocessor chip may re-

quire an investment by the user of upwards of 1000 times that amount in

test gear (e.g. Fairchild's Sentry VII) - and he still may not know if the

chip will do the job it is supposed to do (Vodovoz [75)). Both user and

manufacturer come face to face with the problems of seeing if the chips

work and at this moment, no one is fully satisfied with present chip check-

out techniques. The hardest hit, though, is the end user who measures his

chip needs in hundreds, and who can not afford the sophisticated test equip-

ment that can give him better answers than those he gets with his own home

brewed test methods.

Two truisms must be recognized at this point:

1. Testing does not add to product quality, it merely evaluates the quality

already present.

2. The test function normally requires a larger expenditure for equipment

than needed for any other part of the production organization.



Another way of expressing the first statement is to say that the qual-

ity must be built in through use of good components and good workmanship.

The second statement indicates that the question of the amount of testing

to be performed must be very carefully considered and answered. The amount

of testing which should be performed is that minimum which clearly demon-

strates that the product performs or fails to perform as specified. This

rather vague definition must be expanded greatly so that all responsible

personnel have a reasonably accurate concept as to what constitutes a 'pro-

per minimum test' and also what constitutes the economics of testing. One

such attempt appeared in Watkins [70].

Most users demand that the test equipment detect troubles which are

not present at the time of testing but which may occur at some future time.

To achieve such tight tolerences, one has to test his system on a regular

basis. The cost of such testing can be prohibitively expensive. So, we

need a procedure which enables the end user to evaluate the trade-offs

between the frequency of testing (consequently, the cost of testing) and

the "confidence" he can have in his system. This is the subject of our

investigations.

This -report describes a methodology and means for accurately deter-

mining confidence limits for the reliability of large digital logic net-

works, without exhaustively exercising all possible input sequences or

simulating all logic faults in the network. This report is divided into

two parts. In the first part, some mathematical models to estimate the

reliability of digital circuits are presented. A heuristic method of as-

signing weights to faults depending on their "importance" in a given cir-

cuit is described. The models presented can be used to

1. predict the reliability of a circuit

3



2. evaluate test sequences

3. develop more accurate reliability models of (redundant) fault tolerent

computers.

The second part deals with the statistical methods of estimating confi-

dence limits.

4
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Chapter II

TEST SEQUENCES

Test generation is the process of finding the set of input patterns

for a digital circuit which will either verify that the circuit is operat-

ing correctly or else provide some information on the nature of the failure.

The set of such input patterns is often designated as a test sequence (or

simply, a test). It is desirable that the test

1. be reasonable in size

2. be produced at reasonable expense, and yet,

3. detect a maximum number of faults.

Many algorithms have been proposed for generating tests for digital

circuits. Some of the procedures make use of an algebraic description of

the circuit under consideration. Others directly utilize the gate level

circuit topology and functional description. In this section we will sur-

vey briefly some of these algorithms. In almost all these studies, a com-

mon assumption is that a logic element can only fail by sticking at zero

or by sticking at one.

The test generation procedures that have been evolved so far can be

broadly classified as either deterministic or probabilistic. Examples of

deterministic techniques include the Boolean difference method (Sellars [681), the

one dimensional path sensitization method (Armstrong [66]) and D-algorithm

(Roth [661). All of these methods offer high fault coverage (i.e., each

test pattern detects a loarge number of faults) and reasonable size test

sequences. But, they are computationally complex and limited to special

classes of circuits. For example, the D-algorithm uses cubical algebra and

5



requires extensive programming to automate the procedure. Moreover, the D-

algorithm is originally designed for combinational circuits. Extensions

to these methods to handle sequential circuits have evolved in recent

years, but the complexity prohibits their use.

In the random technique, a candidate test is chosen using a random

number generator. If the candidate test detects new faults not detected

by previous tests, it is added to the test set; otherwise it is discarded.

The figure of merit of a candidate test can be defined as the ratio of the

number of new faults detected to the number of faults to be detected. A

candidate test may be discarded if its figure of merit is less than a spec-

ified threshold value.

There are two major categories of Automatic Test Equipments (ATE),call-

ed stored program ATE and comparison ATE. Stored program testers usually

contain a mini computer and back-up storage as disk and test sequences stor-

ed vector by vector or as a high level program interpreted by the computer. The

stored program ATE typically also stores the responses and a fault diction-

ary, which are usually generated by simulation. The actual test sequences

can be obtained using either a deterministic or random procedure.

Comparison ATE employspseudo-random patterns as test vectors. Here

two circuits, the Unit Under Test (UUT) and a known good copy of the circuit

(denoted by C*) are inserted into the ATE (Figure 1).

6



Pattern [Discrepancy
Generator IDetector

L~i517

A Known Good
UUT C u C

Figure 1. Comparison ATE

The pattern generator applies several million pseudo random patterns to both

the UUT and C*. The outputs of the circuits are then compared by the discrep-

ancy detector. A mismatch indicates a fault in UUT. The advantages of com-

parison type ATE are 1. very fast generation of test patterns, 2. absence

of an expensive computer and storage. However, a known good copy of the cir-

cuit is needed.

Although random test patterns can be generated very inexpensively, this

technique becomes progressively inefficient when attempting to detect more

deeply embedded faults (Parker [75a). Adaptive (Parker [75a]) and Weighted

(Schnurmann (75]) random test generations have been developed to improve the

efficiency of random test generation.

For a complex digital network, one is usually satisfied with tests that

detect a certain percent of the modelled faults (say 95%). As this number

approaches 100%, the number of input patterns required to detect these faults

approaches a very large number. So, most end users are satisfied with tests

that check a percentage of faults.

7



Let G denote the set of all modelled faults and let Q be the set of

faults an user want to detect (QIG). Typically, if an end user is satis-

fied with tests that detect 95% of the modelled faults, then 95% of G consti-

tutes Q. A test sequence T is then generated to detect the faults in Q

and the circuit is exercised against all the input patterns in T periodical-

ly to assure reliable operation of the circuit.

Let Tl, T2,...,Tn be a number of test sequences detecting faults in Ql,

Q2,...,Qn where each Qi is 95% (or any given percent) of G. The actual set

of faults detected by each of these tests Ti can be determined before hand

by probing. By using a fault dictionary, a fault may be identified with-

in its equivalent class. The set of physical faults associated with this

equivalent class may be distributed over many components, such as IC's. In

order to determine the exact location of a physical fault, probing techniques

are required. It should be clear that by interchanging these test Ti peri-

odically, say T1 during the first testing, T2 when the circuit is tested

second time and so on, the reliability associated with the circuit can be

enhanced appreciably (Figure 2).

Q6 \ q2

G

0Q4

Figure 2. Sets of Faults
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PROBABILITY OF DETECTING A FAULT

Parker [75b] has defined signal probability as follows:

Definition: The probability of a signal denoted as

a = P(A-I) (1)

for a signal A is the probability that signal A equals 1. Similarly,

the probability that the signal equals 0 is given by

P(A-0) = 1 - P(A-I) = 1 - a (2)

Boolean operations NOT, AND, OR can be applied on probabilities.

(a) Boolean Negation (NOT) corresponds to the probability expression

b 1 - a (3)

(b) Boolean AND of two independent signals A and B in the expression C -

A.B corresponds to the probability expression

c - a • b (4)

c) Boolean OR of two independent signals A and B in the expression C

A + B corresponds to the probability expression

c - a + b (5)

Let f(xlx2,...,xn) denote the function realized by a combinational

circuit. A logical fault a changes the function realized to fa (xl,x2,...

xn). Using the theory of boolean difference methoc (Sellers [68]), the

fault a is detected by an input for which f + f is 1. Using the probabil-

aaity expression for NOT, AND, OR operations, the probability P(f + fa Ml) can

be evaluated as a function of the input signal probabilities. This is the

probability that fault a will be detected. It is often convenient to assign

[ -- A -- - 1.---.--1-----'------ - -- 9



equal probabilities to input signals. This is known as bundling (Parker

[75c]).

To see how the probability of detecting a fault can be used in random

testing let us consider the circuit in Figure 3.

A

B

C

(6)

f - Asc + ZC + A -- + ABE (6)

Figure 3 An Example - Probability of detecting a fault.

Let a be the fault that A is stuck at 1. Then

f (A,B,C) - B + C (7)

f + f - BC + ABC (8)

P(f + f a ) = b + c - ac - 2bc +abc (9)

Assuming equal probabilities to a, b, and c, i.e.,

ai-bi-ci-x

the probability of detecting fault a is given by

P(f + f -1 ) - 2x - 3x2 + x3  (10)

Since x is a probability, the above function is plotted for values of x

between 0 and 1.

10



p 0.4

0.4

x

This function P(f + fa 1) in terms of the input signal probabilitiesa

can be used to evaluate the values cf the input signal probabilities for

any desired probability of detecting the fault a. Theses values can be

used to control the random input patterns generated leading to adoptive

test generation. For example, from the above plot, the input signal prob-

abilities (i.e., x) must be set to 0.4 in order to achieve a probability

of detecting the fault of 0.4.

DEPENDENCY OF RANDOM TEST GENERATION ON THE LOGIC DEPTH

The Monte Carlo method was used extensively for testing the circuits of

ILLIAC IV (Moreno [72), Agrawal [72]). Some of the interesting results

obtained during the testing are given here. It was found that a circuit

with 437 lines was completely tested (all s.a.0 and s.a.l faults with sin-

gle fault assumption) with 56 random input patterns. Another circuit with

89 lines required 210 patterns for complete testing while for a third cir-

cuit with 115 lines, the test generation was not complete even after 2000

patterns. These results lead to the conclusion that the computation time

does not depend only on the number of lines or faults. Agrawal [75a] showed

I1



that the number of random inputs required for a complete test of a circuit

depends on the logic depth, i.e., the number of levels in the circuit. In

Agrawal [75b], an expression for the probability of sensitizing a path upto

the primary output through L levels, P(L) is derived. Then, the probability

of sensitizing a path through L levels by at least one out of M independent

patterns P(L,M) is given by

P(L,M) - 1 - [1 - P(L)]M (11)

Solving the above equation for M,

MH. log[l - P(L,M)] (12)

log(l - P(L)]

This equation can be used to estimate the number of random input patterns

required to detect all faults in a circuit.

Experimental results have shown that equation (12) gives a good estimate

of the number of random input patterns required for a complete check of com-

binational circuits (Agrawal [75b]). Although these results are derived for

simple tree structures consisting of n input NAND gates, the model can be

applied to any combinational circuit since an equivalent NAND trees can be

constructed for the given circuit very easily.

CONFIDENCE LEVEL

In Agrawal [75b], the term confidence is used to mean the probability

of sensitizing a path through L levels by at least one of the M random in-

put patterns in a test set. Another way of describing this meaning is to

say that the confidence of a test sequence is the probability of detecting

a fault since a fault is detected if a path from the site of the fault to

a primary output can be sensitized.

12



In another attempt to define confidence level, Shedletsky (77] derived

an expression for latency intervals in a circuit. Error latency can be de-

fined as the delay between the occurrence of a fault and the first error in

the output. Latency interval of a circuit is the maximum of the minimum

number of input patterns necessary to achieve a given probability of detect-

ing a fault. Shedletsky notes that the required length of a random test

(i.e., the number of input sequences) to achieve a given confidence level

is equal to the latency interval of the circuit. A more detailed discussion

of error latency is included in a later section. Thus, in this definition,

confidence level is related to the number of test patterns in that test set.

In both of the above attempts, confidence level is defined in terms of

a test sequences. However, a more useful definition of confidence level

should relate to the reliability of the circuit itself. A meaningful def-

inition should include mean time between failures (mtbf) of the circuit due

to logical and physical faults. Such a definition can be used to schedule

periodic check-outs in order to achieve a desired confidence in the circuit.

In the next section two definitions of reliability are given. The authors

believe that these definitions are more useful.

RELIABILITY ASSOCIATED WITH A TEST SEQUENCE

Here two definitions of reliability are presented. The first defini-

tion accounts for the faults that are detected by the test sequence under

consideration. This definition is then extended to include modelled faults

that are not detected by the test sequence and even faults that can not be

modelled.

Definition 1: The reliability RT of a circuit associated with a test se-

quence T which detects the set of faults Q - (gl,g2,...,gn) is a function

13



of time and is given by

R n [(l-R ft fi'dt)] (13)
i [i i to

assuming that the circuit has passed the test T at time tO and where

fi is the probability density function of the fault gi with a mean of

1/Ai

and ki is a constant which describes the dependence of reliability

on the fult gi, 0 < ki < 1.

The term (1 - ft fi-dt) in the above equation gives the probability
to

that the fault gi does not exist at time t since ft fi-dt is the cumulative
to

probability that fault gi is present at time t assuming that gi did not

exist at time tO.

Typically, all ki's are set equal to 1, however, an user can bias the

reliability in favor of some of the faults depending on their importance in

his circuit. These constants are in line with the weighted random test pat-

tern generation (Schnurmann [75]) where a weight to each signal is assigned

according to its importance in the circuit.

Equation (13) describes some kind of decay function for R and Figure 5

shows the general shape of such a curve. By applying the test T periodically,

the reliability RT can be restored to the maximum (provided the circuit pass-

es the test T each time). In such cases, the curve has a sawtooth form

(Figure 6). The frequency at which the circuit must be tested depends on

the minimum reliability RT.

14



RT

time

Figure 5 Reliability Associated with a Test.

Rmaxk

RT

t 2t 3t

Time

Figure 6 Periodic Testing Restores Reliability to

its Maximum
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The above definition takes into account only the faults that are de-

tected by the test T. But, intuitively, it should be obvious that the re-

liability of the circuit should be lower than that predicted by the above

equation due to the faults that are not detected by test T. So, a second

definition of the term reliability is needed.

Let QT - (gn+lgn+2 ...... g.) be the set of modelled faults that are

not detected by test sequence T. Let NM = (g mlgnm2, ...... ,gnml) be the

set of unmodelled faults. Certain physical defects like shorts can be

modelled as logical faults while some physical defects like changes in vol-

tage and loading can not be modelled as logical faults. Defects that can

not be modelled may effect the performance of the digital system.

Definition 2: The reliability of a circuit associated with a test sequence

T is given by

RT n i t nmi t
n (1-ki f fi'dt)][ H (1 -kj ft f dt)H( (1- f ffdt)] (14)

iil to j n+l tj -nml to

where fi, fj, and fl are the probability density functions,

ki and kj are weighting constants as before and

tO is the time the test T was applied last,

tJ is the time when a test checked for fault gj and

t is the time when the circuit was designated operative.

The first term in equation (14) is due to the faults (gl,g2,...,gn)

that are detected by test T. The second term is due to the modelled faults

that are not detected by test T and the third term is due to the unmodelled

faults. The third term may be dropped if the unmodelled faults are not

critical or if the failure rates of such faults are not readily available.

The general form of the reliability curve given by equation (14) is

shown in Rigure 7. When the reliability reaches a value which is not ac-

16



ceptable, the circuit must be replaced.

RTj

t 2t

time

The first definition may be used when an user is interested only in

the faults that are detected by his test set. But, if more accurate re-

liability measures are desired, the second definition should be used.

AN EXAMPLE

The reliability calculations are illustrated using the following

circuit.
A

C J__

D

E

Figure 8. An Example

17



This circuit has 24 stuck faults under the single fault assumption. This number

is reduced to 10 faults on input signals and 4 faults on branches at fanout

points (g and h stuck faults) using fault collapsing. The table given below

contains 6 input patterns that detect all faults in the circuit.

Inputs Faults Detected

ABCDE

1 1 1 0 1 0 o0 o o, i9 fh il 1  1krl 1

2 1 0 1 0 1 0 a1,cl, f1, gl1,Jo,Mo0

3 1 0 0 1 0 b1, Cljfl1,9l,Jo0,mo0

S x 1 1 0  c d h i km

xO4 x~~ 0 000 , ,0
5 ox ,l 1, oi 1, kml

6 xxl01 eo,ko,mo

Table - 1

Let fa = X e- t be the probability density function (pdf) of the
0

fault a stuck at 0. For the sake of this example, we will assume that all

faults have identical pdf's. We will assign a 1 to the weighting constants.

Test set T - (1,3,5) detects 75% of the faults in the circuit.

QT " (aO,al,bO,bl,cO,cl,dl,el,fO,fl,gO,gl,hl,il,JO,jl,kl,mO,ml)

Using the first definition,

19 A -9AtT -iJ, (i - ft~e- rdr) - e-1 t

0

4If the mean time between failures (1/X) has a value of 5 X 10 hours, then

-5
=-19x2xlO t

For a minimum reliability of 0.9, the time between testings can be calculated:

18



t ln(RT)/(- 38 x 10 - 5) 277 hours

Thus, the test T should be applied every 277 hours in order to maintain a

reliability of 0.9.

While using the second definition, we will ignore faults that can not

be modelled. The set of faults that are not detected by test set T is

_ -(dO,eO,hO,iO,kO).

Assuming that all faults were tested at time t-0,

19 ft4-Xr 24
i 1 (i - ItXe- dr)][ II (1 - Xe- dr)]

0 J=20

When X = 2 x 10 - 5 , for a reliability of 0.9, the time between tests is cal-

culated to be t - 219.5 hours.

Table (2) lists few other values for time between test for various

reliabilities.

TABLE 2

RA MTBF x t1 with 1st def. t1 with 2nd def.

0.75 50.000 hrs. 2 x 10- 5 hr 757 hrs 559 hrs

0.8 50,000 2 x 10- 5  587 464

0.9 50,000 2 x 10- 5  277 219.5

0.95 50,000 2 x 10- 5  134 107

0.75 90,000 1.14 x 10- 5  1328 1051

0.8 90,000 1.14 x 10- 5  1030 815

0.9 90,000 1.14 x 10-5  486 385

19



Chapter III

ASSIGNMENT OF WEIGHTS TO FAULTS

In a microprocessor system or in any digital system, certain faults

are more crucial to the operation of the system than others. For example,

in most IC's, the enable and power lines are the most critical faults

bn these are fatal to the system. It may be useful to assign

weights to the signals according to their importance in a circuit so

that better reliability measures can be obtained. It is very difficult to

come up with a procedure which assigns absolute values to weights since the

importance of a signal not only depends on its function in a circuit, but

the relative importance of signals may be biased by user views. Here we

attempt to outline a heuristic procedure that enables an user to assign

weights to various faults.

Faults in a digital system may be classified into four groups.

1. Very Important Faults: These faults are very critical to the operation

of the system. It may be useful to include faults whose relative importance

is not entirely clear. This leads to a conservative estimate of the circuit

reliability, but the weights may be changed when the significance of faults

becomes discernible. We can assign a weight of 1 to faults in this class.

2. Important Faults: There may be some faults whose presence impairs the

operation of the circuit but does not create a hazardous outcome. These

faults may become critical to the circuit operation or prolonged existence.

For example, a stuck input in a shift register does not effect the output

immnediately, but if the fult remains it may lead to an erroneous results.

Such faults are assigned a weight of 0.75.

3. Unimportant Faults: Faults in this class may not be critical to the

operation of the circuit at all, even in continued existence. For example,

in most computers, a fault in a clock circuit which changes the cycle time slightly
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is not critical to the operation of the system. A weight of 0.5 is assign-

ed to faults in this category.

4. Don't Care Fault: Some faults may not effect the operation of the cir-

cuit, especially if redundant logic is used. These faults can be ignored in

some dircumstances, and so a weight of 0.0 is assigned to such faults.

At this point we would like to draw an analogy from an automobile.

Examples of very important faults include faults in the circuit that con-

trols the brakes, faults in the ignition circuit. A fault in spedometer

or a gasoline indicator can be critical in prolonged existence. A faulty

spare tire can also be classified as an important fault. A failure in the

heater or air conditioner operation can be classified as unimportant faults.

A defect in accessories, such as the radio or clock, can be considered as

a d6n't care faults.

BOUNDS ON TIME BETWEEN TESTS

In this section the upper and lower bounds on the time between tests

(TBT) are derived. The reliability of a circuit associated with a test set

S drops below the permissible minimum if the circuit is not exercised against

the test set S at least once every TBTmax for that test. Application of a

test more frequently than that indicated by TBTmin may not be necessary to

maintain the desired reliability.

Let Sl,S2,...,Sn be a number of test sequences such that

SIus 2 us3 U...USn G
1 ~ n G(15)

SL # Sj if i j

Let us consider a test sequence S. Let g be the most important fault among

the faults detected by S. Let t denote the time between test for test set S.
1
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Upper Bound on t,: The maximum value of ts satisfies the following equation

1- k £ts fg *dt Rmin  (16)

where k is the weight assigned to fault g, fg is the pdf associated with~g

g and Rmin is the minimum acceptable reliability.

Lower Bound on ts: Let Qs f (gl,g2,...gm) be the set of faults detected by

the test set S. Assuming that all the faults are equally important in the

circuit, we can assign a weight of 1 to all faults in Qs. Then, the minimum

value of ts satisfies

!(- t s fgi'dt) Rmn(17)
inl o

The actual value of the time between tests for the test set S, ts,

depends on the real values of the weights ki's. If reasonable weights can

not be assigned to faults in a digital system, TBTmin should be used for

scheduling the check-outs of the circuits.

FAILURE RATES OF VARIOUS FAULTS

Sometimes it may not be practical to calculate the failure rates of

each and every fault in a digital system. In such cases, it is desirable

to classify the faults into various groups depending on either the proxim-

ity of the nature of the failure mechanisms or on the closeness of the

failure rates. Once similar faults are grouped together, identical fail-

ure rates for faults in a group may be assumed. Since the grouping of

faults into various categories impacts the accuracy of the reliability mea-

sures, the classification should be conducted very carefully.

Let IX 2,..., Xn be the failure rates respectively of the faults gl,

g2,...,gn, the modelled faults that are detected by the test T. Let
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X n+l' n+2,... r be the respective failure rates of the modelled faults

gn+l'gn+2' ' ' ' ' g n that are not detected by the test T while nml,Anm2,...

X nm are the failure rates of unmodelled faults.

Assuming exponential failure rates, the sum of these failure rates

gives the failure rate of the digital system under consideration.

n r nmt
X Ai+ I Aj + I (18)

i-l J-n+l X-nnl

Since it is not possible to find the individual failure rates of unmodel-

led faults (or their nature), it is reasonable to conglomerate the failure

rates of unmodelled faults into a single term Anm.

n i
Ackt I Ai + I Aj + Anm (19)i= I J-n+l

The fault rates of modelled faults may similary be bundled into one or more

groups depending on the similarity of the faults and the required accuracy

of the modal. We will illustrate bundling of faults for LSI circuits.

For LSI circuits it is observed (Tees [71], Kasouf [78]) that the

failure rates of the pins (primary inputs and outputs) are higher than the

failure rates of the gates. This leads to a classification of faults into

3 groups - faults on pins, faults on gates and unmodelled faults. The fail-

ure rate can be written as

ALSI ' Apins + Xgates + Anm (20)

where Apins is the total failure rate of faults on pins,

Xgates is the failure rate due to faults on gates.

Equation (20) is similar to the equations in Tees [71] and Kasouf [78]

which are of the general form

ALSI C'P + C2 "G + C3  (21)
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where P is the number of pins and G is the number of gates in a LSI circuit.

Constant Cl, C2, and C3 are evaluated from the data supplied by the vendor

from his own failure analysis and user feedback. In our case, the model

is similar, but the constants reflect the failure rates of modelled logic

faults on pins and gates. If the values of Xpins and Xgates in equation

(20) can be obtained, failure rates of individual faults can be calculated

assuming identical fault rates for faults in a group. These failure rates

can then be used to calculate reliability of the circuit and the frequency

of testing to achieve a desired reliability.

Available data about failures in semiconductor devices is typically

of the form, n failures in m hours of operation. This type of data enables

us to estimate the failure rate Xckt of the circuit as a whole. However,

if, in addition to observing that a failure has occurred, the nature of

the fault - a fault on a pin, a fault on a gate or else - is discovered,

we would have data to estimate Xpin and A gates in equation (20). If the

bundling results in a different model, the failure rates due to faults in

each group can similary be estimated.
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Chapter IV

EXTENSIONS AND SOME OTHER APPLICATIONS

Although equation (20) is derived using the LSI failure mechanism,

this model (equation (19)) can be used for any circuit. For a complex circuit

using a large number of circuits, two extensions of the model are possible.

1.

Ckt - ICi + "wire j + Xnm (22)

where
XICi is the failure rate of IC i considered as one piece.

Awire j is the failure rate of faults on the interconnecting wire

J which depends on the wire length etc.,

X is the failure rate of all the other faults.nm

2. XCkt " pins + Awires + Agates + Ar (23)

where

Xpins is the combined failure rate of faults on the pins of

all the IC's.

Awires is the combined failure rate due to the faults on

interconnecting wires.

Agates is the combined failure rate of the faults on all

gates.

Anm is the failure rate due to all the other faults.

As noted in the introduction, the model can be used to evaluate test

sequences. Recently, a statistical method for test sequence evaluation is

developed (case [161). Generation and evaluation of test sequences have been

the subjects of much investigation in the past. But here, test sequence
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evaluation is a by-product.

In the previous sections, we have shown how to calculate the reliability

associated with a test sequence. This reliability can be used as a measure

to rank test sequences: a better test will have higher reliability and/or

lower frequency of testing for a given confidence level.

One other possible application is to use our model in deriving reliability

equations for redundant fault-tolerant systems. There have been many mathemati-

cal models developed for redundant systems like triple modular redundant (TMR),

hybrid redundant, and stand-by spare. (See for example Bouricius [71], Mathur

[711). In almost all these studies, a simple exponential function is used to rep-

resent reliability of constituent systems. If the model presented in this report is

used instead of simple exponential distribution, more accurate reliability pre-

dictions can be derived.
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CONFIDENCE INTERVAL FOR THE RELIABILITY RA

As the reliability measure RA defined earlier is decreasing as time in-

creases, we would like to maintain the reliability at some level by applying

the test sequence A periodically. In order to find the associated confidence

limit to maintain RA at some given level and finally to present the time inter-

val which is required to check the given circuit periodically, let's define

some terminologies first.

Definition

Confidence level 100 $% (0 < B < 1) of the reliability is the percentage

value of the probability such that we are at least 100 0% sure that the reli-

ability is contained in some interval (RL,Ru) which is called the 100 0% con-

fidence interval of RA while RL and Ru are called lower and upper confidence

limit of RA respectively. i.e. Prob. [RL < R < Ru] S.

Remark: Frequently one is interested in one-sided confidence interval and the

definition given above can be modified accordingly i.e. if one is interested

in lower confidence limit only (as is the case with us) then Prob. [ R] -

is the associated probability statement and 100 8% is called the confidence

level of RA and R is called the (lower) confidence limit of RA etc.

If identical failure rates are assumed among each of QA' Q- and NM, the

reliability RA will eventually be a function of time t with parameter

A - X +X 2 +A where XI: failure rate for modeled, detected by test seq. A.

X2 failure rate for modeled, undetected by test seq. A.

X3 : failure rate for modeled, unmodeled faults.

i.e. RA- Rl(t; XA 2,X3) - R2 (t;X) where X m X + A + X3" (23)

Further assume exponential failure model for each of QA Q and NM, the para-
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meters Al. A2 and A3 respectively and assume failures in each set QA'QA and NM

occur independently of each other.

Here, one performs an experiment and observes a Poisson process in which

r failures are observed in time t r  n to, where t is the time of termination

of the life test and n is the number of items in the sample subjected to life

test (Type I Censoring See Mann [75]) and r - r1+r2+r3, where rl,r2 and r3 are

the number of faults in QQ- and NM respectively observed in time interval t
A A 0

Let Ki be the random variable of which ri is the realization, i - 1,2,3 and

let K - K1 + K2 + K3* Since K i's follow Poisson distribution with parameter

Ai tr (see Mann [75]), K also follows Poisson with parameter Atr by the inde-

pendency assumption of Ki 's for i - 1, 2 and 3.

Let 8 - n t0 /r - tr r and using the identity Prob (K < r)-Prob[ x 2(2r+2)>2X tr ,

where X (v) is the random variable representing chi-square distribution with

v degrees of freedom, we can show 100 (1-a)% upper confidence limit AU for A
X _- (2r+2)2

is a where X q (v) means q-th quantile of chisquare distribution

with v degrees of freedom. Here, one can obtain the lower confidence limit
to maintain R at confidence level 100(l-a)%, since R is a decreasing function

A A

of y . i.e.

X 2(2r+2)
RL - R2 (t;XU) -R t; 1-a 9 (24)2r8

where R2 is given in (23)

Further, to find the time period to required to periodic checking procedure

to maintain the reliability at some given level Rmin' we can simply use (24)

i.e., t0 is the value of t which satisfies the equation

2
X -t(2r+2)

R R t X1 a(25)
Rmin -R 2  t; 2r2
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i.e. if we check the given circuit at to time period, we can at least be

100 (1-a)% sure that the reliability RA is at least Rmin.

Note: Since we do not know the true value of RT , which is a function of

unknown Xi's, it is more realistic to estimate the lower bound of

RT instead of "mean" value of RT and use the time interval to main-

tain the lower bound of FT. In other words, results in this sec-

tion is more conservative (more frequent checking) compared to the

case in the examples in the appendix at the end of Chapter II.
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Chapter V

Point and Interval Estimation for Life Testing

Procedure of LSI/MSI Reliability Models - System Point of View

In theoretical studies of equipment reliability, one is often concern-

ed with systems consisting of many components, each subject to an individual

pattern of malfunction and replacement, and all parts together making up the

failure pattern of the equipment as a whole.

Drenick (1960] showed that a complex piece of equipment, after an extend-

ed period of operation, will tend to exhibit a failure pattern with an expoen-

tial distribution for the time between failure (inter-arrival times) and that

the time up to the first failure is also nearly exponentially distributed.

Hence LSI/MSI reliability model can be described by expoential density function

f(t)= (1/e)exp(-t/e) (1)

where 8 is the average life time and t is the time to first failure

of LSI/MSI.

One is often interested in estimating 6 or, if mission time tm is speci-

fied, in estimating reliability of an LSI/MSI component R(tm) i - F(tm) where

F(t) is the cumulative distribution function for f(t). i.e. R(t ) is the pro-

bability of no fault occurs in the given LSI/MSI until time tm .

In the following notes, the estimation procedure of e and R(-) will be explain-

ed and demonstrated through examples for the various sampling situations. More-

over the procedure of computing the time period to maintain the given LSI/MSI

component at the specified reliability level (lower confidence limit for R(.))

is illustrated.

1. Testing without replacement

In the life testing procedure of LSI/MSI, a faulty LSI/MSI is not replac-

ed until the testing is terminated.
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(a) Estimation for Type II censoring

Suppose that a sample of size n LSI(MSI) with failure time distribution

given by (1) has been subjected to life testing and that the test is termina-

ted at the time of the rth failure, r < n. More generally, one might assume

that a sample of size n has been randomly selected from a one-parameter expo-

nential population, and that experimentation is terminated at the time that

rth observation becomes available.

The joint density function of the ordered observations X(1) '...X(r),

X(i _ X(i+ ) , ii,...,r-l and r-l,2,...,n is given by

n! Z~ixi+(n-r)x r
fX( 1 ) (r) (xl'" "'Xr)= (n-r)!Or exp 6

o < x i...1 xr

Clearly, if the right-hand side of this is maximized with respect to 8,

one obtains, as the maximum - likelihood estimator (MLE) of 0,
rZ i~X i + (n-r)x (r)

r

Epstein(1953-1954) showed that i is unbiased, sufficient and complete for

0 and because i is based on a complete sufficient statistic, it is, by the

Lehmann-Scheffe'-Blackwell theorem, unique minimum-variance estimator (UMVUE)

among unbiased estimator of e.

Also Var () 2r.

If we let Si (n-i+l)(X(i) - X(i_l))/6 , i-l,...r, Si has an independent

expoential distribution with scale parameter equal to 1 and it is well known

that 2Si, i-l,...r, has an independent chi-square distribution with 2 degrees

of freedom.
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r
Also one can easily infer that E 2Si = 2re/e (being the sum of r indepen-

i=l
dent chi-squares) has a chi-square distribution with 2r degrees of freedom. A

lower confidence bound on 6 at confidence level 1-a is therefore given by

. 2 2
2r8/x 1a (20, where xa(k) is the 100 th percentile of a chi-square distribution

with k degrees of freedom. The interval [2re/x2_ 2 (2r), 2re/x /2 (2r) is a

two-sided confidence interval for 6 at confidence level 1-a. To obtain such

intervals one simply substitutes calculated values for 6 and tabulated values

of chi-square percentile (see example below). The minimum variance unbiased

point estimator of R(t m ) for run is [See Pugh (1963) and Basu (1964)]

t m -
R*(tm) - ( - -) -I , nO > t ,

n6-m
0 nO < t .

A lower confidence bound for R(t m ) at level 1-a can be obtained by substi-

tuting 2r6/x 2_(2r) for 0 in the expression exp(-tm/o). Two-sided confidence

intervals are obtained similarly.

These results are summarized in Table I below.

The time period t * to maintain the reliability at a given level, say 8,
m

can be obtained by equating B with the lower confidence limit for R(t ) and

solving for tm.

Table I

parameter point estimate interval estimate

r
Ilx(i) + (n-r) X(r) F 2r, 2r -

12 2
r xl-a 2(2r) x 2 (2r)

n-I 2r
R(tm (i - -- ) , n 6 > tm exp(-tm/[ 2 ])

m n x1_(2r)o , n B tm
0_____ _ _ _n__<(lower confidence limit)
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r
Example 1.

Let n-24 LSI(MSI)'s are put in life testing and the test was terminated

at r-3rd failure.

If the observed exponential failure times in hours from the above censor-

ed samples of size 24 are 6200,9200 and 16900 then 6-(6.2 + 9.2 + 22(16.9)]"

310 /3 - 129,100 hours. 95% two-sided confidence interval (a-0.05) is [53605.5,

626040.6]. If mission time tm - 5,000 hours, lower confidence limit for R(tm)

at level .95 (a-.05) with tm 5,000 hours is exp (-5 00 0 /[ 6x129100 )=.92 i.e.

we can be at least 95% sure that the reliability is at least .92. To obtain

the time period to maintain the reliability at least 8-.95 level, we solve

-tm/6x1291001

.95 - exp [ /--T / 59 and get

tm = 3155.8 i.e. we might have to check the LSI afte: using 3155 hours period-

ically to be 95% sure that the reliability is at least .95.

(b) Estimation for Type I censoring

If a life test is terminated at a specified time to, the joint p.d.f.

of X(l). ,X(r) is given by

n! r
f ... ,x (xl...,x r)xp Z x + (n-r)t },x1) (r) l'r (n-r)!Br i=l 1 0

o<xl. •.<xr to

The maximum likelihood estimator of e is easily seen to be

r
lii)+ (n-r)to

r r #0.

This estima1or is biased for small samples but has all the desirable

asymptotic properties associated with the MLE of 8 under Type II censoring.
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To obtain a confidence interval for 6, one may consider the probability

that the number of failures, K, in a sample of size n is equal to r at time to.

P(K=r) = (n-r)!r! [R(t)] n-r, l-R(to)]r.

Then a conservative (because K is discrete and the failure times are not

used) lower confidence bound 6 at level 1-a for R(to) is given by the solution

of
n I n] )n-i -- = -- if r(n+l) n-r+l(1x)rdx

iIn-r n 6 1 ( 1- 6 )' a o r (n-r) r (r+l)- r

From the relationship between the binomial and the beta distributions,

it can be seen that 6 is equal to

1 - V1 -a (r+l, n-r) = Va (n-r, r+l), the 100th percentile of the beta

distribution with parameters n-r and r+l. From this, one can determine, from

R(to)-exp (-to/6), a lower confidence bound for 0 at level 1-a as to/ln(i/6).

Table II

parameter point estimate interval estimate

r x
e i  XE 1  + (n-r)t° to/ln(1/6)
6r ,r 0 (lower confidence bound)

R(to) R(t;.8) 6=V (n-r, r+l)

(lower)

Example 2.

Sample size n-15 LSI's wereput in life testing and the test was termin-

ated at to-240 days. The number of failures up to time to were r-2; then a

90 % lower confidence bound for R(to) is .6827 and a 90 to lower confidence

bound for 0 is 240/ln(l/.6827)a 630 days.
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2. Testing with replacement.

(a) Estimation for Type II censoring

If a life test is performed with replacement and testing is termin-

ated at the time of the rth observed failure, then the joint p.d.f. of

the ordered failure times X(1 ),.. X(r) is given by

f ,....,x (r) (XV .... Xr) (nlk) rexp(-nlXxr ),O<xl.. .<__xr ,9

where - ,'.

From this expression one can obtain the m.L.E. of A as (r/X(r))/n

and of 6 as (nX(r))/r. For this model, one can also write the joint p.d.f.

of X(l ) . .x(r) as

(nA)rex r , .
p( n ( xi-x i -)] , Xo x 1.: .<xr

i=1

In other words, each Si = Xi-X 1i 1 , i=l .... ,r, with X=O, has an inde-

pendent exponential distribution with scale parameter (An)- I . Since X(r )

r
Z Si, the density of X(r ) for testing with replacement is given by
i-l

r _ n-l
f x (x r )  (r-l)! exp(-nkXr)"

(r)

Consequently, 2nAX(r) has a chi-square distribution with 2r degrees

of freedom, and confidence bounds for A, 8 or reliability can be obtained

as functions of observed values X (r) and values to be obtained from tables

of the chi-square distribution.
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Table III

parameter point interval.

/r! 2nX(r) 2nX(r)1

X(r)r X2 x LX2I~~~~ I = Xr/ 2(2r) Xf2 r )

R(t) R(t;8) R(t; 2X1 -( 2 r)

(lower limit)

Example 3

For a sample (with replacement) of size 5 LSI's from an exponential

population for which the first observed failure time is 5600 hours and the

fourth and last observed time, occuring at the termination of the life test,

is 20,000 hours, the MLE for 8 is 5(20,000)/4-25,000 hours and an 80 % lower

confidence bound for 8 is 10(20,000)/X 2 80(8)a18,100 hours.

(b) Estimation for Type I censoring.

In this case, one observe a Poisson process in which r failures are

observed in time trwnto, where to is the time of termination of the life

test and n is the number of items in the sample subjected to life test.

For this model, the number of observed failures, K, is a random variate with

P(K1r).(r;-j)(Xt) rexp(-Xtr) with lff/e.

The M.L.E X of is r/t r - r/nt o and the MIE 8 of 8 is x-lnto/r.

then

rkP(K<r)- Z (Xtr) exp(-Xtr)
k-O

= Zr
Mtr rf exp(-z)dz,
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An incomplete gamma function with shape parameter r + 1. Therefore

Prob(K<r) - Prob [x2(2r+2) > 2 Xtr]. Thus if one observes r failures, then,

with probability at least 1-a, 2Ar< X_a (2r+2), or 2nto/x _a(2r+2) is a con-

servative lower confidence bound for e at confidence level 1-a. Similarly,

it can be shown that

Prob (K>r) = Prob[X 2(2r) 2Xtrl.

Hence a conservative upper confidence bound for 0 at level 1-a is given

by 2r0/x2(2r), and a conservative two-sided confidence interval at level

1-a is

[ 2r; 2ri
XL - /2 (2r+2) , X2 (2r)

Cox (1953) discusses the interval

F 22ri 2ri
X- 2 (2r+l) X2 (2r+l)

which he states is slightly narrower than that given above but sometimes

has a true confidence coefficient less than 1-a.

Table IV

parameter point interval

2rR , 2r;

8 e-nto/r [ 2 :r( 2  2r 3X t/ X _a/2 (2r+2) X a/2(2r0

R(t) Rit) - R(t;0) R(t 2r6

(lower limit)

Note that R(tie) is an increasing function of 0.
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Example 4

If 200 LSI's are life tested with replacement for 1,000 days and fail-

ures are observed, a 90% lower confidence bound for the mean time to fail-

ure is 400 (1,000)/X 0 (8)-400,000/13.36 - 29,900 days. As an example in

real life, we illustrate the estimation procedure using the data from G.

Kasouf and S. Mercurio (1978).

Certified data from an airborne radar processing systems (RPS) operat-

ing in a simulated airborne inhabited environment is used to calculate the

observed LSI/MSI failure rate. The certified data was accumulated during

the RPS 1600-hour test-analyze-and-fix program followed by a 351-hour fixed

length reliability demonstration test. Analysis of data shows an accumula-

tion of 3.9 and 4.6 million operating hours for LSI and MSI circuits, respec-

tively. One LSI and no MSI failures were experienced. In this case tr=

(3.9 + 4.6) x 106 = 8.5 x 106 and i-l/(8.5xl06 ) -0.118/106 hrs and r=l.

60% (a-.4) confidence interval for X(failure rate) is

X22(2) X X!(4) ]
.2 82 - [.026314 .35341]

95% lower confidence bound for 6 is

1062r8 2 x 0.118

2 21.78637 x 106 hours
X29 5 (4) 9.488

To obtain the time period to maintain the LSI at B=.98 level, we solve

.98 - exp[-t/(l.78637 x 106)]

and get

*4
tm m 3.609 x 104 hours

i.e. we may have to check the LSI's in 3.6 x 104 hours period to be 95% sure

that the reliability is at least .98.
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Appendix A

STATISTICAL PROPERTIES OF QUASI-RANGE IN SMALL

SAMPLES FROM A GAMMA DENSITY
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Introduction

Karl Pearson [19201, studied combinations of order statistics

which were later named quasi-ranges by Mosteller [1946]. Quasi-ranges

are simple to obtain and, for moderate sample sizes, yield more effi-

cient estimators of standard deviation than do sample ranges. In cases

where abundant data are available and where the cost of complicated

data reduction far outweighs the cost of sampling, the use of quasi-

range in estimation problems is satisfactory.

Quasi-range may be defined as follows. Consider the ordered

sample values Y., Y29 ...' Yn where a < Y1 < Y2 < . Y < b. If the

r smallest and r largest of these values are deleted, the range of the

remaining (n-2r) values is defined to be the rth quasi-range, W .r

Symbolically,

Wr - Yn-r - Yr+l' n > 2r + 1, b - a > Wr > 0. (1.1)

Note that sample range is simply the quasi-range, W
0

Many authors have found quasi-ranges to be of particular interest

and have developed numerous applications for them. Among others, Harter

[19591 , Cadwell [19531, Chu [1957] , Benson [19491 and Ghosal [1957]

have derived estimators based on quasi-range, and Rider [19591 has

studied various quasi-range distribution.

As a natural extension of research first published by Gupta [19601

regarding the distribution of order statistics from a gamma density, this

study of quasi-range is intended to provide further information needed by

the analyst in applying'the methods of simple estimation and inference

that have been developed. It should also be noted that Prescott [19741

has given variances and covariances of order statistics from the gamma

distribution. Though Tables I, II and III show the moments and quantiles

of quasi-range for limited sample sizes and parameter values (n-l(1) 10 and

a - 0(1) 2) only, methods described here can be easily extended.
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Distribution of Quasi-Range in Samples

From A Gamma Density

The density function of the standard gammua distribution wi~th

parameter ai is

_-l CL
f(y) - Wc) e- y (y > 0), (2.1)

where ai is a non-negative integer. The corresponding cumulative distri-

bution function may be expressed as a partial sum of Poisson probabil-

ities:
ai -yi'

F(y) - 1 - Z (Y~ ' ) (2.2)

Let iU be the rth quasi-range from a sample of size n with distri-

bution F(y). It is well known (Harter (1959]) that the distribution of

WU can be expressed in integral form as
rb n-2r-2

*(w n! , *, [,(Y)]r [F (Yw) - F(y)]r r.(n-2r-2).r a 23

(l-F(y+w)r]rf (Y) f(Y+wr ) dy for 0 <w r b - a.

Substitute (2.2) into (2.3) and let am(ci,r) be the coefficient of tm
a )r

in the expansion of ( r t/jJ (See Prescott (1974]), then (2.3) can be
j -o

written as

(r) (n-2r-2)!(i) il-an 1 1 0, 2 r0 )2 a

n-2r-2 223 14()

i-a-2 3 i-3 ia- 54 1

oi(n-2r-2-i 3  ci1 (7~r 17~
r a (c,n-2r-2-i 3) E. a i ar r17

6e0 70 7 n 8

C9 %) wr U ~ ~ 4 +1 U!51819) wk13++l)

Z9- (i+n (i +i +1 +i*+i +u+l)

igo+-256 8 9
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In order that this expression for the density of W be of use, itr

can be reduced to the following form,

n-2r-2 -w r(r+J+l) a(J+r+l) k
*(w ) =E e E A(J,k)w r, w > 0, (2.5)

r kO r r

where A(J,k) is the accumulation of all coefficients in (2.4) involving

the like powers of wr and e. This function, which we call the coefficient

matrix will be used as a notational convenience throughout this paper.

Although it is impossible to express A(j,k) in closed form, we can compute

its numerical value in the summation process of (2.4) by evaluating the

coefficient of [exp{-wi(r+j+l)}] wk where for specified values of n, r and a
Sr r

k - i4 + i7 + a - i 5 - i 8 - 9

Using A1,k). the moment generating function M(t) associated with

quasi-range can be written as

n-2r-2 a(J+r+l) A(J, -k!
M(t) - E E- ,l t < r + a + 1 , (2.6)

J-O k-O (r+j+l-t)k+l

from which it is easily seen that the ith moment about the origin of

the rth quasi-range is

n-2r-2 a(J+r+l) A(J ,k) (ki) (2.7)
41(n,r,a) - ( .

i -0 k0 (r+J+l) k+l+i

These values along with the ith central moments are tabulated in Table I.

The cumulative distribution function for W can be obtained fromr

(2.5) and it may be transformed to a partial sum of Poisson prob-

abilities as

n-2r-2 a(r+j+l) A(k)k! k [exp{- w (r+j+l)}]{Wr(r++l)}i l( r) - -k+l i- r lE
J-0 k-0 (r+j+l) k  f i-a (2.8)

from which the p-quantile &p of the density (2.5) can be calculated iter-

atively. A suitable iterative procedure which is quite efficient in com-

puting &P is given by
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(P - P) (2 M P - P - (2 .9)

where *( p) p and p() - pi at the ith iteration. To initiate the pro-

cess, fairly arbitrary v4alues of and & may be chosen and using (2.8) p

and p2 can be obtained. These values are tabulated in Table III.

Analysis of Results

Ghosal [1957] has published results of an analysis of quasi-range

distributions associated with samples from an exponential density.

It is well known that the gamma distribution reduces to the exponen-

tial distribution when a - 0: hence a limited comparison between

Ghosal's data and that of this study is possible. Table IV presents

this comparison. It is seen that p'(n,r,a) and u2(n,r,a) from Table I

agree exactly with Ghosal's values, but values from Table II show some

disagreement. Small discrepancies are revealed in the values for , and

still larger errors appear for y2. To fand the cause of these differ-

ences, Ghosal!s formula was reapplied with more accuracy in each cal-

culation. Exact agreement between data sets was obtained by this proce-

dure, leading to the conclusion that Table I and 1I are correct for a - 0.

Gupta [1960] has published tables of central and non-central moments

for the distribution of order statistics in samples from a gama density.

Thus, it is possible to form a direct comparison between his data and

that of this study. First moments, calculated from Gupta's results,

were subtracted from those of Table I with the remainders written as

absolute deviations. Results of this comparison are presented in Table V.

A maximum deviation between the two data sets exists when n - 10, a - 2,

and r - 3. This discrepancy, amounting to 0.00079, reflects a deviation
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from Gupta's results of 0.06 percent and represents the largest percent

discrepancy found. Unfortunately, no recommendation based on this anal-

ysis can be made regarding the relative merit of either data set. It

can only be surmised that discrepancies may be due solely to

machine error computation (See Prescott (1974]). Higher moments are not

compared since Gupta's work extends only to the derivation of formulas

for the covariance between Yi and Y . Although these formulas may be used

to calculate quasi-range variance, the amount of work required to

obtain a comparison is considered prohibitive. To obtain still higher

moments, original deviations for covariance between powers of Y andn-r

Yr+l are required, a task beyond the scope of this study. To test the

behavior of error in moments of higher order, an alternative computer pro-

gram was devised that differed from the original only in methods used

to calculate coefficients A(J,k) in equation (2.5). Slightly different

values for 41(n,r,a) were computed, but in general, the discrepancies

tend to zero as the order of the moment increased. Two examples of

this phenoqenon appear in Table VI.

Another independent test was performed to determine the extent

to which machine error accumulation contributes to overall error. The

basic machine program used for all computation was revised so as to per-

form calculations in double precision arithmetic; only small differ-

ences less than 0.0001 were detected while comnputation time increased

by at least a factor of two.

In addition to normal machine error, values in Table III contain

a controlled error introduced by the iteration procedure tolerance limit.

Thus a maximum error of two percent can exist in the lower tails of the

distributior,since the quoted values of O(w r) may contain as much as

0.0001 error.
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TABLE I

MOMENTS OF THE QUASI-HiAGE DENSITY

n r u u uA
1 , 2 3 4 2 3 4

2 0 1.00000 2.00000 6.00000 24.0000 1.00000 2.00000 9.00000

3 0 1.50000 3.50000 11.2500 46.5000 1.25000 2.25000 11.0625

4 0 1.63333 4.72222 15.9722 67.7963 1.36111 2.32407 12.0069
1 0.50000 0.50000 0.75000 1.50000 0.25000 0.25000 0.56250

5 0 2.06333 5.76309 20.2951 b8.0914 1.42361 2.35532 12.5525

1 0.d3333 1.05556 i.b0556 3.90741 0.36111 0.32407 0.84028

6 0 2.26333 6.67722 24.3015 107.533 1.46361 2.37132 12.9086

1 1.08333 1.59722 3.00347 6.91086 0.42361 0.35532 1.01085

2 0.33333 0.22222 0.22222 0.29630 0.11111 0.07407 0.11111

7 0 2.45000 7.49369 23.0o44 126.232 1.49139 2.35058 13.1595

1 1.28333 2.11056 4.26961 10.3267 0.46361 0.37132 1.12692
2 0.58333 0.51309 0.60764 0.90394 0.17361 0.10532 0.18793

6 0 2.59286 6.23470 31.5776 144.276 1.51160 2.38641 13.3458
1 1.45000 2.59389 5.56675 14.0379 0.49139 0.38058 1.2113

2 0.78333 0.62722 1.10397 1.78711 0.21361 0.12132 0.24400

3 0.25000 0.12500 0.09375 0.09375 0.06250 0.03125 0.03516

9 0 2.71786 8.91417 34.9204 161.736 1.527142 2.39032 13.4898
1 1.59286 3.04899 6.67346 17.9656 0.51130 0.38642 1.27505

2 0.95000 1.14389 1.67592 2.90439 0.24139 0.13058 0.2d654
3 0.45000 0.30500 0.27675 0.31515 0.10250 0.04725 0.06456

10 0 2.82b97 9.54283 38.1013 178.670 1.53977 2.39306 13.6043
1 1.71735 3.4745 8.17758 22.0545 0.52744 0.39030 1.32531

2 1.09287 1.45614 2.29998 4.21866, 0.26178 0.13643 0.31982
3 0.61666 0.51055 0.53203 0.66983 0.13028 0.05651 0.0858
4 0.20000 0.08000 0.0400 0.03840 0.04000 0.01600 0.01440
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TABLE I

MOIENTS OF THE QUASI-RAUCGE DETSITY

n r i.O liu U
2 3 4 2 3 4

2 0 1.50000 4.00000 15.0000 72.0000 1.75000 3.75000 20.8125

3 0 2.25000 7.13889 29.2500 147.333 2.07639 3.64375 24.0404

4 0 2.74248 9.70216 42.3483 221.445 2.18098 3.77775 25.0139

1 0.77257 1.09722 2.21094 5.70833 0.50036 0.59013 1.73654

5 0 3.10619 11.;704 54.3690 293.197 2.22195 3.7137d 25.3323

1 1.28762 2.34649 5.48081 15.5615 0.68653 0.66630 2.42653

6 0 3.39320 13.7526 65.5211 362.346 2.23880 3.66255 25.4053

1 1.67117 3.57071 9.26752 28.3012 0.77789 0.70027 2.76526

2 0.52051 0.50762 0.70830 1.27101 0.23669 0.19768 0.4o0128

7 0 3.62951 15.4183 75.8791 428.936 2.24497 3.62173 25.3746

1 1.97529 4.72806 13.2999 43.0566 0.62631 0.69622 2.96760

2 0.91088 1.184O9 1.97755 4.01206 0.35438 0.25338 0.63624

8 0 3.32996 16.9145 85.5740 493.103 2.24592 3.58855 25.2978

1 2.22641 5.81167 17.4336 59.2309 0.85479 o.653C4 3.10b55

2 1.22193 1.91420 3.63859 8.11144 0.42110 0.27046 0.76760

3 0.39248 0.29211 0.31307 0.43306 0.13807 0.0900k o.14036

9 0 4.00373 18.2741 94.6958 555.032 2.24420 3.56093 25.2013

1 2.43976 6.82490 21.56833 76.4098 0.87246 0.67993 3.18317

2 1.47967 2.65170 5.56665 13.3830 0.46229 0.27497 0.U8927

3 0.70647 0.71717 0.93851 1.49405 0.21806 0.12374 0.24225

10 0 4.15673 19.5212 103.318 614.375 2.24107 3.53743 25.0974

1 2.62493 7.77397 25.7180 94.2998 0.88370 0.67258 3.22351

2 1.69910 3.37648 7.67506 19.6406 0.43953 0.27455 0.96067

3 0.96747 1.20447 1.82215 3.23287 0.26846 0.13740 0.31734

14 0.31500 0.18973 0.16538 0.18663 0.09050 0.04860 0.06167
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TABLE I

MOME NTS OF THE UASI-RANGE DEISITY

a 2 _

ax r U' U Ul.
1 2 3 4 2 3

2 0 1.87500 6.00000 26.2500 144.000 2.48437 5.68359 36.6086

3 0 2.81250 10.778 52.0312 301.998 2.87765 5.50374 40.9339

4 0 3.42544 14.7036 75.9551 460.204 2.96999 5.24149 41.6138

1 0.97367 1.69782 4.11572 12.5749 0.74978 1.00251 3.50675

5 0 3.87611 18.0098 98.0076 614.614 2.96563 5.05440 41.3822

1 1.62279 3.64635 10.3094 34.8763 1.01290 1.10472 4.76581

6 0 4.23027 20.6718 11.398 763.996 2.97664 4.92076 40.6910

1 2.1052b 5.55944 17.5344 64.0997 1.12722 1.08395 5.35039

2 0.65779 0.79518 1.35360 2.92363 0.36250 0.35364 0.-b 483

7 0 4.52062 23.3970 137.351 906.102 2.95919 4.62096 40.3414

1 2.46696 7.36737 25.2509 98.1885 1.1b240 1.04142 5.63643

2 1.15112 1.857b5 3.80536 9.33924 0.53477 0.43328 1.33669

8 0 4.76646 25.6583 155.061 1047.05 2.93914 4.74326 39.6006

1 2.80134 9.05773 33.1679 135.698 1.21023 1.01360 5.77345

2 1.54378 3.01072 7.03112 19.0292 0.62747 0.44589 1.62337

3 0.49668 o.46o66 0.60724 1.02141 0.21397 0.16589 0.31427

9 0 4.97880 27.7073 171.694 1181.09 2.91384 4.66059 39.2926

1 3.06784 10.6355 41.1229 175.614 1.22387 0.98565 5.82849

2 1.86855 4.17317 10.7850 31.5621 0.68170 0.43961 1.B0521

3 0.89411 1.13315 1.82935 3.55457 0.33372 0.21943 0.52999

10 0 5.16550 29.5616 1b7.384 1310.56 2.39921 4.62375 38.6224
1 3.29647 12.1102 49.0226 217.213 1.23028 0.96132 5.84492

2 2.14494 5.31528 14.8951 46.4916 0.71450 0.412902 1.9200d

3 1.22357 1.90430 3.56196 7.73555 0.40719 0.23548 0.66407

4 0.39892 0.30044 0.32382 0.44742 0.14130 0.09123 0.14160
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TABLE II

KURTOSIS AND SKEIESS OF THE QUASI-RANGE DENSITY

a= 0 a= 1 a 2

n r Y Y y Y Y Y
1 2 1 2 1 2

2 0 2.00000 6.00000 1.61985 3.79592 1.45143 2.93129

3 0 1.60997 .06000 1.26467 2.57601 1.12746 1.94318

4 o 1.46356 3.48105 1.17289 2.25669 1.02405 1.71766

1 2.00000 6.00000 1.66736 3.93619 1.54415 3.237b6

5 0 1.38664 3.19367 1.12128 2.13106 0.97975 1.64239

1 1.49342 3.44379 1.20124 2.12266 1.06366 1.64517

6 0 1.33922 3.02597 1.09335 2.06865 0.95817 1.61503

1 1.28876 2.63316 1.02066 1.60233 0.90572 1.21061

2 2.00000 6.00000 1.71662 4.16271 1.62036 3.58148

7 0 1.307o6 2.9163b 1.07672 2.03476 0.94705 1.60686

1 1.17631 2.24305 0.92690 1.37556 o.31466 1.06!60

2 1.45600 3.23520 1.2OLO8 2.06615 1.10796 1.67409

8 0 1.28382 2.63927 1.06617 2.01526 0.94134 1.60732

1 1.10487 2.015do 0.37067 1.25444 0.76131 0.94163

2 1.22869 2.34741 0.98982 1.44167 0.89710 1.12320

3 2.00000 6.00000 1.75506 4.36257 1.67598 3.66413

9 0 1.26624 2.76211 1.05918 2.00378 0.93661 1.61199

1 1.05538 1.86778 0.63434 1.18163 0.72798 0.39121

2 1.10110 1.91773 0.87482 1.16113 0.78104 0.88453

3 1.43985 3.14458 1.21521 2.09471 1.13820 1.75881

10 0 1.25248 2.73806 1.05441 1.99709 0.93766 1.61873

1 1.01891 1.76403 0.80963 1.13420 0.70447 o.66165

2 1.01858 1.66689 0.80159 1.00888 0.71036 0.76114

3 1.20174 2.21931 0.98776 1.40312 0.90628 1.12585

4 2.00000 6.00000 1.78479 4.52855 1.71765 4.09185
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TABLE III

QUANTILLS OF THE QUASI-RAU G DF41SITY

n rI
0.005 0.010 0.025 0.050 0.100 0-500

2 0 0.00500 0.01002 0.02532 0.05128 0.10529 0.69307

3 0 0.07301 0.10538 0.17216 0.25311 0.38013 1.22796

4 0 0.18740 0.24300 0.34585 0.45969 0.62398 1.57842

1 0.00250 0.00501 0.01266 0.02564 0.05264 0.34654

5 0 0.30863 0.38007 0.50671 0.64030 0.82655 1.83811

1 0.04213 0.06072 0.09908 0.14544 0.21791 0.69315

6 0 0.42479 0.50748 0.64990 0.79688 0.99684 2.04451

1 0.11740 0.15207 0.21560 0.28596 0.38639 0.95262

2 0.00167 0.00334 0.00644 0.01709 0.03510 0.23102

7 0 0.53375 0.62354 0.77813 0.93379 1.14347 2.21539

1 0.2o479 0.2510 0.33334 0.41944 0.53824 1.15894

2 0.02979 o.o4291 0.07000 0.10271 0.15381 0.4d732

8 0 0.63195 0.72900 0.89250 1.05498 1.27163 2.36134

1 0.29324 0.34643 0.44390 0.54159 0.67272 1.33003

2 0.08629 0.111 3 0.15655 0.20991 0.28325 0.69314

3 0.00125 0.00251 0.00633 0.01282 0.02632 0.17327

9 0 0.72437 0.62553 0.99556 1.16351 1.36586 2.46697

1 0.37824 0.44069 0.54690 0.65251 0.79261 1.47626

2 0.15514 0.1d993 0.25139 0.31653 0.40525 0.06414

3 0.02307 0.03323 0.05421 0.07952 0.11905 0.37660

10 0 0.81127 0.91547 1.08982 1.26206 1.48657 2.60200

1 0.45961 0.52729 0.64153 0.75352 0.90082 1.60383

2 0.22698 0.26926 0.34294 0.41730 0.51714 1.01016

3 0.0684i 0.08868 0.12568 0.16633 0.22431 0.54716

4 0.00100 0.00200 0.00506 0.01026 0.03106 0.13861
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TABLE III

QUANTILES OF TILE QUASI-RANGE DENSITY

0

n r 0.900 0.950 0.975 0.990 0.995

2 0 2.30240 2.99567 3.68498 4.60437 5.29340

3 0 2.96973 3.67609 4.37217 5.29507 5.93538

4 0 3.36629 4.07731 4.77571 5.69972 6.39047

1 1.15120 1.49784 I.b4249 2.30219 2.64670

5 0 3.64978 4.36286 5.06246 5.96700 6.67796

1 1.63025 1.99957 2.35957 2.1J3150 3.1 203

6 0 3.86992 4.5622 5.2502 6.o')91 6.90103

1 1.94796 2.32575 2.69276 3.16979 3.52290

2 0.76747 0.99656 1.22e32 1.53478 1.76445

7 0 4.04991 4.76439 5.46700 6.39209 7.08331

1 2.15698 2.57036 2.94075 3.42061 3.77512

2 1.13774 1.39188 1.63814 1.95970 2.19767

8 0 4.20322 4.91802 5.62091 6.54613 7.23741

1 2.37942 2.76620 3.1330 3.62038 3.97576

2 1.31982 1.6640 1.91677 2.24750 2.4L914o

3 0.57560 0.74692 0.92126 1.15113 1.32342

9 0 4.33661 5.05119 5.75431 6.67967 7.37111

1 2.54087 2.92966 3.30377 3.78656 4.14252

2 1.6043 1.87563 2.13497 2.46779 2.71177

3 0.87661 1.07119 1.25935 1.50448 1.68518

10 0 4.45434 5.16867 5.87193 6.79731 7.48870

1 2.67921 3.07020 3.44561 3.92986 4.20712

2 1.77394 2.04899 2.31117 2.64607 2.89034i

3 1.09902 1.30390 1.50080 1.75395 1.93967

4 0.46045 0.59908 0.73688 0.92057 1.05808
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TABLE III

QUANTILES OF TILE QUASI-RAUGE DENSITY

n r 0.005 0.010 0.025 0.050 0.100 0.500

2 0 0.01003 0.02000 0.05000 0.10004 0.20122 1.14619

3 0 0.15027 0.21318 0.33959 0.43555 0.70285 1.96018

4 0 0.36050 0.48475 0.66665 0.85909 1.12332 2.47699

1 o.Oo44o 0.00896 0.02256 0.04554 0.09284 0.57346

5 0 0.61465 0.74254 0.95728 1.17211 1.45760 2.85266

1 0.07813 0.11172 0.16037 0.26149 0.38491 1.12388

6 0 0.63269 0.97362 1.20669 1.43414 1.73171 3.14683

1 0.22091 0.28193 0.39321 0.51212 0.67743 1.52622

2 0.00267 0.00575 0.01450 0.02932 0.05996 0.37976

7 0 1.03410 1.17774 1.42216 1.65722 1.96137 3.38761

1 0.38293 0.46442 0.60413 0.74625 0.93504 1.84107

2 0.05287 0.07579 0.12234 0.17683 0.26488 0.79123

8 0 1.20573 1.36039 1.61054 1.5047 2.15960 3.59110

1 0.54697 0.64110 0.60034 0.95622 1.15963 2.099241

2 0.15572 0.19978 0.28006 0.36673 0.48740 1.11605

3 0.00211 0.00423 0.01068 0.02160 0.04423 0.28334

9 0 1.36572 1.52221 1.77725 2.02043 2.33252 3.76710

1 0.70230 0.80569 0.97315 1.14357 1.35663 2.31730

2 0.28009 0.34052 0.44512 0.55203 0.69479 1.36255

3 0.03998 0.05737 0.09316 0.13594 0.20188 0.61064

10 0 1.49910 1.66722 1.92535 2.17261 2.48593 3.92194
1 0.64764 0.95677 1.13903 1.31120 1.53102 2.50571
2 0.41212 0.48390 0.60595 0.72609 0.88332 1.60849

3 0.12054 0.15496 0.21776 0.28582 0.38106 0.68207
4 0.00167 0.00335 0.00845 0.01710 0.03503 0.22581
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TABLE III

QUANTILES OF THiE QUASI-RAPiGE DEIISITY

a- 1

r 0.900 0.950 0.975 0.990 0.Z95

2 0 3.27175 4.11295 4.92794 5.98947 6.77216

3 0 4.16697 5.00322 5.01462 6.86676 7.64312

4 0 4.69667 5.52970 6.33657 7.36306 0.15586

1 1.72308 2.17995 2.62111 3.19314 3.61311

5 0 5.07275 5.90270 6.70622 7.74876 8.51912

1 2.40290 2.b7273 3.32185 3.69623 4.31575

6 0 5.36439 6.190U 6.9910 6.03133 6.79966

1 2.65012 3.32395 3.77413 4.34775 4.76602

2 1.17316 1.49210 1.60047 2.20036 2.49371

7 0 5.60113 6.42526 7.22407 8.26119 9.02326

1 3.16536 3.66056 4.11055 4.66296 5.10014

2 1.71395 2.05146 2.37266 2.7d_29 3.07633

8 0 5.8008 6.62250 7.41953 G.45465 9.22049

1 3.45408 3.Q2910 4.37d47 4.94955 5.36568

2 2.09308 2.43J34 2.7u3o9 3.1753d 3.47334

3 o.bO966 1.135b7 1.37447 1.66435 1.91177

9 0 5.97160 6.79259 7.58813 d.62159 9.38646

1 3.67748 4.15241 4.60109 5.17104 5.50644

2 2.38678 2.73751 3.06497 3.47729 3.77511

3 1.33711 1.60321 1.85610 2.17697 2.40930

10 0 b.12258 6.94204 7.73634 6.76o52 9.53281

1 3.b6339 4.34278 4.79024 5.35765 5.77002

2 2.63223 2.963b4 3.31366 3.73052 4.03501

3 1.66430 1.93972 2.19844 2.52363 2.75732

4 0.71653 0.91741 1.11255 1.36651 1.55314
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TABLE III

QUA11TILS OF THE QUASI-RANGt DhSITY

~=2

n r 0.005 0.010 0.025 0.050 0.100 0.500

2 0 0.01336 0.02667 0.06667 0.13337 0.26772 1.48193

3 0 0.20333 0.26564 0.45424 0.64757 0.93238 2.50734

4 0 0.50879 0.64998 0.U9053 1.14226 1.4L274 3.15140

1 0.00585 0.01170 0.02945 0.05941 0.12098 0.73783

5 0 0.62962 0.99379 1.27530 1.55330 1.91741 3.61662

1 0.10274 0.14676 0.23661 0.34240 0.50252 1.43883

6 0 1.11816 1.30041 1.60341 1.9431 2.27022 3.97875

1 0.2U,977 0.37138 0.51652 0.6708d 0.68390 1.94767

2 0.00372 0.00745 0.01677 0.03794 0.07754 0.4b703

7 0 1.37959 1.56939 1.88513 2.13369 2.56482 4.27413

1 0.50378 0.61187 0.79431 0.97691 1.21834 2.34410

2 0.06891 0.09870 0.15980 0.2323b 0.34338 1.01193

6 0 0.02391 0.04771 0.11927 0.23854 0.47830 3.19375

1 0.72115 u.84439 1.05052 1.250o44 1.50886 2.66761

2 0.20387 0.26082 0.36499 0.47662 0.63212 1.42440

3 0.00272 0.00546 0.01376 0.02784 0.05696 0.36266

9 0 0.02525 0.05044 0.12609 0.25216 0.50493 3.37813

1 0.01676 0.03332 0.08329 0.16657 0.33603 2.42899

2 0.36761 0.44620 0.58122 0.71376 0.90124 1.76219

3 0.05181 0.07431 0.12057 0.17576 0.26060 0.78040

10 0 0.02654 0.05303 0.13262 0.26519 0.53041 3.54876

1 0.01752 0.03496 0.08741 0.17478 0.35075 2.59041

2 0.01426 0.02803 0.07006 0.14066 0.29397 1.94924

3 0.15658 0.20113 0.26240 0.37020 0.49250 1.12607

4 0.00215 0.00430 0.01086 0.02197 0.04500 0.26867
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TABLE III

QUATILES OF TiLE QUASI-RAI4GE DISITY

S=2

n r
0.900 0.950 0.975 0.990 0.995

2 0 4.01037 4.96855 5.8b349 7.05906 7.91742

3 0 5.07972 6.02017 6.921214 8.07669 0.92230

4 0 5.71182 6.64201 7.53318 6.67744 9.51617

1 2.15116 2.69395 3.21071 3.t7134 4.35110

5 0 6.15983 7.06213 7.96644 9.10309 9.93713

1 2.98259 3.53200 4.05055 4.70579 5.17986

6 0 U.5057 4  7.42170 6.300b4 9.431U1 10.2625

1 3.573 4.07710 4.5142b5 5.24297 5.71319

2 1.4739b 1.e6055 2.229-3 2.70262 3.04538

7 0 6.78563 7.69744 8.57246 9.69697 10.5269

1 3.93606 4.48300 4.99551 5.64059 6.10667

2 2.14286 2.545U6 2.2510 3.40241 3.74659

8 0 4.79530 5.01436 5.13140 5.20337 5.22781

1 4.26202 4.d0662 5.31629 5.95743 6.42078

2 2.61016 3.01350 3.39975 3.37632 4.21984

3 1.12121 1.4'296 1.71239 2.08399 2.35403

9 0 4.97994 5.19647 5.31130 5.36197 5.40594

1 3.60b93 3.80366 3.91344 3.9o470 4.00965

2 2.97471 3.38592 3.76904 4.25049 4.60129

3 1.67762 1.99891 2.30077 2.6784b 2.94761

10 0 5.14947 5.36386 5.47697 5.514731 5.57095

1 3.74602 3.92b59 4.02941 4.09351 4.11570

2 3.0666 3.3G293 3.59500 3.76396 3.83384

3 2.06667 2.41903 2.73064 3.12638 3.42082

4 0.90482 1.15297 1.39213 1.7009b 1.92703
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TA11LE IV

COMPARISONS WITH GIO:MAL'L DATA

Data from Ghosal (Exnonential)

n 5 n =10

r JA ii y y

0 2.0633 1.4236 1.3831 3.1940 2.6290 1.539d 1.2525 2.7723

1 O.d333 o.3611 1.4931 3.4210 1.7179 0.5274 1.0169 1.3508

2 - - - 1.00)29 0.2616 1.0193 2.0234

Duta fro= this paper ( =O)

n 5 n=0

r 1" Va 5A

0 2.0633 1.4236 1.3866 3.1937 2.6290 1.5398 1.2525 2.7381

1 0.8333 0.3611 1.4934 3.4438 1.7179 0.5274 1.0109 1.7640

2 .... 1.0929 0.2618 i.u186 1.6669
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TABLE V

COMPARISO S WITH GUPTA'S DATA

Absolute Deviations

n r 0 I 2

2 0 -

3 0 - - -

4 0 - 0.00001 0.00001

1 - - -

5 0

1 0.00001 -

6 p - -

I. - 0.00001 Q.000O1

2 - 0.00001

7 0 - - 0.00001

1 - - 0.00001

0 - 0.00001 0.00002

1 - - 0.00003

2 - 0.00002 0.00002

3 - 0.00001 0.00003

9 0 - 0.00001 0.00002

I - 0.000021 0.00003

2 - 0.0004 omooo6

3 - 0.00001 0.00004

10 0 - 0.00001 0.00004

1- 0.00001 0.00003 0.0001L

2 0.00002 0.00001 0.00023

3 - 0.00007 0.00079

4 0.00012 0.00028
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TAB LE. VI

TESTS OF ACCURACY IN HIGHER 11M01/ITS

Primary Alternate
Program Program

1 1.69910 1.69922

na10 2 3.37648 3.37658

C = 1 3 7.67506 7.67516

r = 2 4 19.6406 19.6407

1 2.14494 2.14516

2 5.31520 5.31542
3 2 3 14.8951 14.8952

r= 2 4 46.4916 16.4915
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Appen~dix B

ON ESTIMATING THE SCALE PARAMETER OF THE

RAYLEIGH DISTRIBUTION FROM DOUBLY CENSORED SAMPLES
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Introduction

This paper is concerned with estimating the scale parameter of the Rayleigh

distribution from censored samples. The Rayleigh distribution arises as a con-

sequence of finding the resultant amplitude of several coplanar random amplitude

vectors which are normally distributed (Siddiqui [1962]). Therefore it is useful

in the analysis of acoustic data or other data obtained from measurements of

amplitudes of electromagnetic waves received through a scattering medium.

This distribution is also useful in communication engineering. Since for

many reasons the samples could be censored, it is important to consider the

analysis of such data.

The Rayleigh distribution is characterized by the probability density func-

tion (p.d.f.) 2

f(x) 0 elsewhere (1.1)
,elsewhere

for positive values of K, with expectation cIF/2 and variance K(I-n/4). To

estimate the parameter K, we employ the methods used by Tiku [1967, 1967(a),

1968, 1968(a), 1968(b)] for the censored samples from normal, exponential,

logistic, log-normal distributions and progressively censored samples from

normal distribution respectively, as described below.

The p.d.f. given in (1.1) can be reduced to

2zexp(-z2) , 0 < z< -
fz(z) = (1.2)

0 ,elsewhere,

where x Z//I

Let g(z) - fz(Z) /FZ(z), where Fz(z) is the probability integral of fz(Z)

given in (1.2). Then, over a small interval, say a < x < b, the linear

approximation a+ 0 z to g(z) is a reasonable one, where a and B are constants

such that
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8 - {g(b) - g(a)}/(b-a)

- g(a) - aB

Some numerical comparison between g(z) and cs+ Bz for various sample sizes

are given in the example. The substitution a + Oz for g(z) in the likelihood

equation results in a solution (KC) which is easy to compute and which is

asymptotically equivalent to the maximum likelihood estimator (MLE) accord-

ing to Tiku's results [1967, 1967(a), 1968, 1968(a), 1968(b)]. To obtain

greater accuracy, i.e., to get an approximation which is practically same

as an actual MLE, it is suggested to try a linear approximation once again

instead of using expensive and time consuming iteration procedures.

In the remainder of this paper the maximum likelihood equation for

finding KC will be set up and solved (for a doubley censored sample),

expressions for the bias and variance of KC will be developed, a numerical

example will be given and an improved estimator of KC (namely Kc) will be made.

Derivation of the Estimator K
c

Let X1, X2P ..., Xn be a random sample from the Rayleigh distribution

with the smallest r1 =ql n and the largest r2 = q2n observations being cen-

sored, where q, and q2 are fixed and decided in advance (Type II censoring).

The remaining sample values, arranged in order of magnitude, are

Yr1 +l' Yr1 +2' n-r2-i Yn-r 2 P

i.e. forming a doubly censored Rayleigh sample of size n - r - r2 . The

probability density function of this censored sample (see, for example

Saw (1961]) is

-1(2/K 1,-r 2 n-r2 z (pn-r 2  z2) F 1-~F (z 2 (2.1)
r-r 2r 1 : iex +1 11: +1 1 Z Z(2i 1 1 'r 1)

where zi  yi//K.
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Taking logarithms of (2.1) and denoting it by L yields:

n log . + (n-rl-r2) log (2/vI) + log zL lg 11r ~ 12i=r~ + • i

n-r 2  (2.2)

1 r (log Fz(z r+1 r 2 Znr
i=r 1l 1 1  2

Taking the partial derivative of L with respect to K and simplifying
2

n-r 2  rZ,+ 1  f (Z+ 1 ) r z
3L _r1 _2 _ 1 2 - [r Zr 1 + 2 n-r 2

=K'+ Trl Z.=n K n-2 -( r z r  z z l l2 K + r2n (2 2.3)

UK K i=r+ 12 F1Z rl+ )

Setting-3 equal to zero in equation (2.3) and solving for K would give the

ordinary maximum likelihood estimator. However, this is a complicated nonlinear

equation because of the term

2zrl exp (-z rl )

g (z ) - )/F (z r ) = 1 , (2.4)gzZrl I  rZr 1 I- exp {-Z 2l

r1+1

which is implicit in K, thus precluding any exact solution to (2.3). Hence an

iteration procedure seems.to be the only solution to this problem, but it is

not only time-consuming and expensive for computation but also sometimes diffi-

cult to converge as is the case with the Rayleigh distribution'. Hence instead

of an iteration procedure, we are proposing that g(z r +) be replaced by a linear

approximation
g(z a + Z (2.5)

Consider now

*We experienced divergences even with the actual population parameter as an ini-

tial guess when censoring is a little bit heavy.
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n-r
23L _ a rlr - .1 2 2

K K i=rl+l

2
r + 5zrl 2 1 2 (2.6)

- 2K+] [a + 1 K~ r 26

In this equation a and a are such that

8 ={gz(h2) - gz(hl)} /(h2-hl) and

(2.7)

a = gz(h1 ) - hI 8

where g is given by (2.4) and the interval (hl,h 2) is chosen in such a way that

zr l+ is sufficiently close to hI or h . But a difficulty arises, because we

don't know the exact point of zrl since it depends on the parameter K we are

going to estimate. This difficulty can be eliminated, for sufficiently large

n-r1-r2, by choosing hI and h2 so that

Fzh) ql - ql(l-ql)

(2.8)

Fz(h 2 ) = q+ ql(l-ql)

The reasoning behind this choice of interval end points is that it is logical

to think of z rl+1as an estimate of the point below which 100.q1 percents of

the population represented by fz(z) lies. Also, the secant between h1 and h2 has

smaller maximum error than the tangent at h or than the secant through hI' and

h 2' if pne 'recalls that the probability is small that the Z will fall out-

side the interval hI ' and h2, where Fz(h )  ql,

Fz(h') - q,- 3 ql(l'q l ). (2.9)
z I n

and Fz(h2') a q, + 3Vn ql(l-q l )

(See figure 1).
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fig. 1.

0 h h h h h' Z
1 1 2 2

Possible range of Zr 1

From (2.8) it can be seen thatas n become large, Fz(h ) approaches q,

from the left at the same rate that Fz(h2 ) approaches q1 from the right. Thus

the interval (hl,h 2 ) shrinks to a single point, and a and 3 can be obtained2?

by evaluating the derivative of gZz) at the point h, and in this case all 3

lines in the figure coincide. The degree of accuracy of the linear approxi-

mation is related to the width of the interval: The smaller the width of

(hih2 ), the smaller the error of the approximation which is obvious from the

figure. But one disadvantage is that the decrease of interval width h2-h1 is

rather slow as n increases though the approximation waf- reasonably good when

n is as small as 10 (see §4). Hence it is suggested in §5 that a possible

acceleration of the approximation be used.

Equation (2.6) can now be solved analytically by satting - 0 and

carrying out the algebra. After substitution of /_ = zi and some simplif.i-

cation, it follows that

0,( -DK 0, (2.10)
2K-

'where G - 2(r1+r2-n)

n-r2  2 2 2B a 2 E y i + 2 r 2Yn-r2 r lYrl+le

i-r1 +1

D - rlYrj+l .

63



In order to solve equation (2.10) for K O

set T - ,r and rewrite it as a quadratic equation in T as

GT - DT + B - 0. (2.11)

Since of is positive we take the positive root of the equation (2.11) as

T, i.e.
T D - Z 2-4GB

2G

Here note that G is negative and B and D are positive. Hence the estimator

K is the square of T as

K- (D2-2GB) - D/ 4 /2G (2.*12)

Properties of the Estimator Kc

The estimator K is same as an MLE except that a linear approximation

was used to solve the likelihood equation. It is expected that the properties

of K should be similar to those of an MLE. While calculation of the expected
c

value of K from equation (2.12) would be extremely difficult, we can discussc

the approximate conditional bias of Kc in the asymtotic case. Following Tiku

[1967, p. 160], we have the approximate conditional bias given by
= ,'L 2

B1  E( W )/R 2(K)

where (3.1)

2 a2LI
R(CK) = -E(2")

aK'

for large values of n - r1 - r2 .

The bias B1 can be calculated from the following equation:

, n-r2
I • -- - "nn 2

E ( r 1 2 + (1/K) I E(Z - (r al2K) E(Z
K i=r+l 1

- (r 0/2K)E(Z 2 ) + (r2/K) E(Z2_). (3.2)

Expected values of the order statistics from the Rayleigh distribution are

given by (see Sarhan and Greenberg [1962])
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n: i-i iI . q  IE(Zi) = (il'n- T (i51) (-l)J ,
•i Q "n i J 0 2 [ (n-i+l+J) 37 -

and

E(Z) 2 n! i -i (- ~ (3.3)E (i-l)!(n-l) -0 J k(n-i+l+J)2

Differentiating (2.6) with respect to K and taking expectations and inserting

the minus sign gives

R2 (K) = -E n2K -D 2K n-r2
r1+r2-n 2 2 (Z2 3rt .=12 -7 EZ) - - E( i

K K i=r1 +l 4K2  rl

ri, 2 2r2  Z 2n2

- T2 E(Zrl)+K E 2) (3.4)

where expectations are also given by (3.3).
Also theasymptotic variance of K can be obtained from (3.4) by use of the

asymptotic property (See Kendall and Stuart [1961]):

Var(K C) = (3.S)
5 9R (K )

As Tiku (1967] justified, since Kc is an asymptotic MLE, its asymptotic properties,

in no doubt, are the same as NILE. We can show that numerically, though they are

complex, the bias B in (3.1) would be zero when n is large. Furthermore, the

attractiveness of the estimator is enhanced by the fact that it can be computed

easily without worrying about divergence, without having to resort to iterations

or procedures requiring expectations of order statistics (see Lloyd [19521).

Table 1 below shows the values of B and Var(K c) for various censoring when the

sample size is 10 and K- 3.
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Table 1. Asymptotic bias and variance of the estimator K for n * 10 with

proportion q, censored from below and q2 above.

q q2  (1) (2)

.1 .2 0.019 0.469

.1 .4 - .092 .160

.1 .6 - .087 .203

.1 .7 - .05S .262

.2 .2 - .009 .687

.2 .4 - .167 .265

.2 .6 - .173 .363

.3 .4 - .217 .279

.3 .5 - .242 .403

.4 .4 - .05S .170

(1) = Bias/a

(2) = Var(K)/a2 , where

02 = Variance of the Rayleigh distr. = K(-Ir/4)

Numerical Example

Using .the closed-form cumulative distribution function F(x) for the Rayleigh

distribution and the probability integral transformation, a random sample of 100

observations was generated from the Rayleigh distribution with the population

parameter K = 3.000. The sample of size 10 and 30 were chosen from the original

sample of size 100.

The following analysis of data is given.

4.1 Linear approximation a 0 z to g(. r )

The following table shows the linear approximation a.Oz 1 zr to g(zrl) for

various sample si:es with proportions q, and q2 censored from the left and the

right, respectively. 66



Table 2. n - 10

ql q2 hl h g(yrl VTK-~) + (Yrl / A.7e)
1 1 e r1 + e

.1 .1 .071 .465 7.09 15.65

.1 .2 6.33 13.82

.1 .3 6.33 13.82

.2 .1 .276 .628 4.16 4.98

.2 .2 3.67 4.39

.2 .3 3.67 4.39

.3 .1 .410 .767 4.16 4.28

.3 .2 3.67 3.94

.3 .3 3.67 3.94

.4 .1 .530 .899 3.66 3.49

.4 .2 3.19 3.22

Here, Ke is an actual MLE by iteration.

Table 3. n = 30

(Yr l1 e 1 + e

.1 '.1 .215 .410 8.65 8.84

.1 .2 7.78 8.27

.1 .3 7.20 7.83

.2 .1 .368 .564 4.56 4.69

.2 .2 4.04 4.24

.2 .3 3.71 3.90

.3 .1 .494 .695 4.06 3.89

.3 .2 3.58 3.58

.3 .3 3.27 3.34

.4 .1 .609 .820 2.83 2.79
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Table 4. n = 100

q, q2 hI h2  g(z) + Bz

.1 .1 .269 .373 7.52 7.41

.1 .2 7.10 7.11

.1 .3 7.22 7.20

.2 .1 .417 .523 4.13 4.17

.2 .2 3.87 3.92

.2 .3 3.94 3.99

.3 .1 .541 .651 2.95 2.97

.3 .2 2.74 2.76

.3 .3 2.80 2.83

.4 .1 .657 .772 2.20 2.21

.4 .2 2.02 2.03

It can be seen from our earlier discussion, the approximation is better when

n is large or h2-h1 is small but when the sample size is as small as 10, the

approximation is not good; hence an improvement is suggested in 65.
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4.2 Comparison With an actual MLE by iteration.

Table 5 shows comparison between Kc and an MLE by iterations* for n = 30.

Table 5.

q q2  Kc  MLE Error

.1 .1 2.934 2.941 .002

.1 .2 2.380 2.399 .007

.1 .3 2.054 2.078 .011

.1 .4 1.887 1.917 .015

.1 .5 1.915 1.9S1 .018

.2 .1 2.938 2.956 .011

.2 .1 2.390 2.417 .012

.2 .3 2.071 2.097 .013

.2 .4 1.914 1.940 .016

.2 5 1.946 1.978 .015

.3 .1 2.985 2.951 .011

.3 .2 2.411 2.410 .000

.3 .3 2.076 2.090 .006

.3 .4 1.909 1.931 .011

.3 .5 1.942 1.967 .012

.4 .1 3.003 2.990 .004

.4 .2 2.432 2.452 .007

.4 .3 2.105 2.132 .012

.4 .4 1.951 1.981 .01S

.4 .5 1.991 2.029 .018

Error = Ixc.-LEI/MLE

*Iterated approximation is obtained by Newton-Raphson's method (See, for

example, Dahlquist (1]).
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Improlement by Linear Approximation Twice

Sometimes a greater accuracy for an approximation of an MLE is needed and

as it was seen in §4, our estimator K is not sufficient for that purpose

when the sample size is smaller than 30. To achieve greater accuracy, one

solution is to use Kc as an initial guess and try an iteration procedure,

which will give faster convergence in every case. But considering the compu-

tation time involved in iteration, it is suggested to try one more linear

approximation using Kc as an estimator of K, which resulted in an estimator

K c' and showed almost the same accuracy (agreed with an actual MLE by itera-

tion to two decimal digits when n = 10) as an ISE by iteration. The second

linear approximation procedure is as follows: Since an estimator K of anc

actual MLE Ke is available, it is reasonable to think r+ /fKc lies closer
e r 1 1 c

to Y r1i/v e. Hence a tangent line at y I/Kc can be used as an approxi-
r 1 e r 1 + c

mation of g(z) in the neighborhood of yrli//Kc (see Fig. 2).

Fig. 2.

a+'2 P 'r l/Ke
P1 Yr + 1

h1  Pl P2  h2  P r1+

i.e. new 8 - g'Cyl /JF) (5.1)

and a sg(Yr I/) 7)~/') ,r+l C c 8,

and computing K by the same formula (2.13) as before will give a new estimator K'.
C c
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The following tables show the K' and ?4LE by iteration for sample size
C

n =10 and n *30, K -3.

Table 6. n =10

q1  2 K'E -Error

.1 .1 2.5133 Z.5123 .0003

.1 .2 2.0379 2.0369 .0004

.1 .3 .8669 .8669 .0000

.1 .4 .9576 .9575 .0000

.1 .5 .9576 .957S .0000

.2 .1 2.S337 2.5335 .0000

.2 .2 2.060S 2.0603 .0001

.2 .3 2.0605 2.0603 .0001

.2 .4 .8947 .8944 .0004

.2 .5 .9915 .9912 .0002

.3 .1 2.5335 2.S335 .0000

.3 .2 2.0603 2.0603 .0000

.3 .3 2.0603 2.0603 .0000

.3 .4 .8943 .8943 .0000

.3 S5 .9912 '.9912 .0000

.4 .1 2.49S2 2.4952 .0000

.4 .2 2.0163 2.0163 .0000

.4 .3 2.0163 2.0163 .0000

.4 .4 .8265 .8264 .0001

.4 S5 .9117 .9113 .0004

Error JKI -LE /MLE
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Table 7. n 30, K 3.

q q K' MLE Error

.1 .1 2.94108 2.94108 .0

.1 .2 2.39997 2.39997 .0

.1 .3 2.07875 2.07874 .0

.1 .4 1.91790 1.91788 .1

.1 .5 1.95178 1.95175 .2

.2 .1 2.95687 2.95687 .0

.2 .2 2.41740 2.41738 .1

.2 .3 2.09744 2.09742 .1

.2 .4 1.940S0 1.94047 .2

.2 .5 1.97899 1.97894 .3

.3 .1 2.95151 2.95148 .1

.3 .2 2.41096 2.41096 .0

.3 .3 2.09010 2.09010 .0

.3 .4 1.93130 1.93127 .1

.3 5 1.96801 1.96796 .2

.4 .1 2.99032 2.99031 .0

.4 .2 2.45209 2.45207 .1

..4 .3 2.13266 2.13261 .2

.4 .4 1.98169 1.98160 .4

.4 .S 2.02922 2.02906 .8

Error - (cI-MLEI/MLE)(1O
4)
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Table 8 and 9 show K' and MLE by iteration whenK - 10.000.

C

Table 8. n - 10, K 10.0

q, q2  K MLE Error

.1 .1 8.37781 8.37461 .00038

.1 .2 6.79320 6.78998 .00047

.1 .3 6.79320 6.78998 .00047

.1 .4 2.88993 2.88993 .00000

.1 .5 3.19218 3.19195 .00007

.2 .1 8.44567 8.44496 .00009

.2 .2 6.86851 6.86776 .00011

.2 .3 6.86851 6.86776 .00011

.2 .4 2.98254 2.98119 .00045

.2 .5 3.30493 3.30404 .00027

.3 .1 8.44497 8.44496 .00000

.3 .2 6.86789 6.86776 .00002

.3 .3 6.86789 6.86776 .00002

.3 .4 2.98122 2.98119 .00001

.3 .5 3.30424 3.30404 .00006

.4 .1 8.31778 8.31747 .00005

.4 .2 6.72130 6.72129 .00000

.4 .3 6.72130 6.72129 .00000

.4 .4 2.75501 2.75471 .00011

.4 .5 3.03910 3.03787 .00041

Error - I'-MLEI/NLE
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Table 9. n - 30, K - 10.000

K' MLE Error

.1 .1 9.80361 9.80361 .00000

.1 .2 7.99990 7.99989 .00000.

.1 .3 6.92917 6.92914 .00000

.1 .4 6.39299 6.39293 .00001

.1 .5 6.50595 6.50583 .00002

.2 .1 9.85625 9.85623 .00000

.2 .2 8.05799 8.05793 .00001

.2 .3 6.99148 6.99141 .00001

.2 .4 6.46834 6.46824 .00002

.2 .5 6.59664 6.59646 .00003

.3 .1 9.83837 9.83827 .00001

.3 .2 8.03654 8.03654 .00000

.3 .3 6.96701 6.96699 .00000

.3 .4 6.43766 6.43756 .00001

.3 .5 6.56002 6.55988 .00002

.4 .1 9.96773 9.96770 .00000

.4 .2 8.17363 8.17356 .00001

.4 .3 7.10888 7.10871 .00002

.4 .4 6.60563 6.60535 .00004

.4 .5 6.76406 6.76354 .00008

Error -(IK,-MLEt/MLE)
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Conclusion: The approximation V, to an MLE which was proposed in this sec-

C

tion has some desirable advantages over the actual iteration procedure Con-

sidering the fact that the iteration procedure requires several steps, K' is
c

clearly time saving becaude the procedure suggested requires the time equiva-

lent to that which is needed for a single iteration.

The iteration procedure depends heavily on the initial guess and as such

it is the main reason we do not want to compare the computing times required

by our method and the iteration procedure. If the initial guess is poor the

computing time required by the iteration will be lengthened. In fact, we

experienced several divergence of the Newton-Raphson's method for our simple

example though the initial guess was chosen as 2.0 when the actual parameter

was 3. K' is computed using the previously obtained K and hence it has an
c c

advantage.

As regards the accuracy of the procedure suggested, we tried some more

simulated data obtained from the distribution with different parameters and

concluded that the relative error to the iterated estimate is negligible in

-4
most cases. (Less than 10 for the sample of size 10 or more). Hence we

recommend to use K' when the time saving is a zrucial matter or when there is
C

a difficulty of setting the initial guess.

At present we are investigating the possibility of extending this new

procedure to the results given in the series of papers by Tiku.
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